**radius of orbit=r=**$\frac{n^2h^2}{4\pi^2m_ee^2} \times \frac1Z=0.529\times \frac{n^2}{Z}$ angstrom.

Where,

n=Principal quantum number, Z=Automic number, $m_e$=Electron mass, h=Plank's constant, e=Electron charge.

Now, the radius of Bohr's first orbit in $Li^{2+}$ =$r=\frac{4..39048e67J*Kg*m^2}{5.766618111e-48C*kg}=0.4746007565$m^2/F. Now, this value should be$=0.529\times\frac{1^2}{3}$ Angstrom. where 1 angstrom =100pm. So the R.H.S. of this equation 17.63 pm.

Now how to prove that L.H.S. of this equation = 17.63 pm using unit conversion calculator? What is F? How to write angstrom symbol here?